Answer:430,000
Step-by-step explanation:
Type it into your calculator and you get that number
Answer:
Step-by-step explanation:
<u>Use the graph to answer the following questions:</u>
When did she start using her phone?
When did she start charging her phone?
While she was using her phone, at what rate was Lin’s phone battery dying?
<u>From 100% to 40% between 2PM and 4 PM:</u>
- (100 - 40)/(4 - 2) = 60/2 = 30% per hour
I think its c
Step-by-step explanation:
a) You are told the function is quadratic, so you can write cost (c) in terms of speed (s) as
... c = k·s² + m·s + n
Filling in the given values gives three equations in k, m, and n.
Subtracting each equation from the one after gives
Subtracting the first of these equations from the second gives
Using the next previous equation, we can find m.
Then from the first equation
[tex]28=100\cdot 0.01+10\cdot (-1)+n\\\\n=37[tex]
There are a variety of other ways the equation can be found or the system of equations solved. Any way you do it, you should end with
... c = 0.01s² - s + 37
b) At 150 kph, the cost is predicted to be
... c = 0.01·150² -150 +37 = 112 . . . cents/km
c) The graph shows you need to maintain speed between 40 and 60 kph to keep cost at or below 13 cents/km.
d) The graph has a minimum at 12 cents per km. This model predicts it is not possible to spend only 10 cents per km.
Answer:
I would rename the trapezoid. I would rename it a semi-hexagon, because it is basically half of a hexagon.