The function h(x) is quadratic and h(3) = h(–10) = 0. Which could represent h(x)?
2 answers:
It would be the last one, h(x) = 2x2 + 14x - 60. If you plug in either 3 or -10 for the x value, the answer comes out to 0.
Answer:
Option D.
Step-by-step explanation:
We can solve this question by finding the values of h(3) and h(-10) from each option given.
Option A.
h(x) = x² - 13x - 30
h(3) = 3² - (13×3) - 30
= 9 - 39 - 30
= -60
h(-10) = (-10)² - 13(-10) - 30
= 100 + 130 - 30
= 200
Therefore, h(3) ≠ h(-10)
Option B.
h(x) = x² - 7x - 30
h(3) = 3² - 7×3 - 30
= 9 - 21 - 30
= -42
h(-10) = (-10)² - 7(-10) - 30
= 100 + 70 - 30
= 140
h(3) ≠ h(-10)
Option C.
h(x) = 2x² + 26x - 60
h(3) = 2(3)² + 26×3 - 60
= 18 + 78 - 60
= 36
h(-10) = 2(-10)² + 26(-10) - 60
= 200 - 260 - 60
= -120
h(3) ≠ h(-10)
Option D.
h(x) = 2x² + 14x - 60
h(3) = 2(3)² + 14(3) - 60
= 18 + 42 - 60
= 0
h(-10) = 2(-10)² + 14(-10) - 60
= 200 - 140 - 60
= 0
h(3) = h(-10) = 0
Therefore, option D is the answer.
You might be interested in
Answer: JW.org is where you can find your answers.
Answer:
Divide it by two
Step-by-step explanation:
Divide it by two
Answer:
yes
Step-by-step explanation:
Answer: You get an answer?
Step-by-step explanation:
Answer: 2t + 18
Step-by-step explanation: