Answer:
The acceleration of the box is 3 m/s²
Explanation:
Given;
mass of the box, m = 12 kg
horizontal force pulling the box forward, Fx = 48 N
frictional force acting against the box in opposite direction, Fk = 12 N
The net horizontal force on the box, F = 48 N - 12 N
The net horizontal force on the box, F = 36 N
Apply Newton's second law of motion to determine the acceleration of the box;
F = ma
where;
F is the net horizontal force on the box
a is the acceleration of the box
a = F / m
a = 36 / 12
a = 3 m/s²
Therefore, the acceleration of the box is 3 m/s²
Answer:
Seven
Explanation:
The rules for significant digits are:
- Non-zero digits are always significant.
- Zeros between significant digits are also significant.
- Trailing zeros are significant only after a decimal point.
Here, the 2, 4, 9, and 2 are significant because they are non-zero digits.
The first two 0s are significant because they are between significant digits.
The last 0 is significant because it is a trailing zero after a decimal point.
Therefore, all seven digits are significant.
Answer:
The answer is <em>e.2</em>
Explanation:
We should make use of Snell's refractive law. The arriving wave has a certain velocity at T in a medium, then instantly it reaches a medium (same composition) at T' where velocity would either decrease or increase.
When the incidence angle is 30 °, and we want to make the refraction angle 90 ° such that no sound passes through the barrier (this would be named total internal refraction), so we want the second medium to be "faster" than in the first.
<em>The steps are in the image attached:</em>