Data table for y = 5x³ - 3
Plug in the x to find the y-values.
x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
y -1083 -628 -323 -138 -43 -8 -3 2 37 132 317 622 1077
Using the normal distribution relation, the probability that sample will exceed the weight limit is 0.004
<u>Using the relation</u> ::
The mean, μ = np = (162 × 19) = 3078
The standard deviation, σ = 28 × √19 = 122.049
<u>The Zscore</u> :
Zscore = (3401 - 3078) ÷ (122.049)
Zscore = 2.65
Hence,
P(Z > 2.65) = 1 - P(Z < 2.65)
Using a normal distribution table :
P(Z > 2.65) = 1 - 0.9959
P(Z > 2.65) = 0.004
Learn more : brainly.com/question/25204474
false false false false false
Answer:
Step-by-step explanation:
yes please
Answer:
m∠R = 60° and AB ≅ MQ
m∠Q = 56° and CB ≅ RQ
Step-by-step explanation:
Given data :
Prove ΔABC ≅ ΔMQR using SAS
The missing information to prove ΔABC ≅ ΔMQR using SAS