If you give us the situation described then I'll be able to help.
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg ()
Speed of Jeremy is 3 m/s ()
Speed of Jeremy after collision is () -2.5 m/s
Mass of Hans is 140 kg ()
Speed of Hans is -2 m/s ()
Speed of Hans after collision is ()
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
=
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
=
= 120 × (-2.5) + 140 ×
= -300 + 140 ×
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 ×
80 + 300 = 140 ×
380 = 140 ×
380/140=
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
Answer: heat
Insulation Traps Heat. Keeping the cold air out
Explanation:
Answer:
If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.