Answer:
Each student ticket costs $8.33
Each adult ticket costs $15.34
Step-by-step explanation:
At Niagra High, Mr. Borton bought 4 student tickets and 2 adult tickets for the high school musical which cost $64. then Mrs. Gelvoria bought 3 student tickets and 3 adult tickets for the show and it cost her $72. How much are each type of tickets?
s = cost of each student ticket
a = cost of adult ticket
Our system of equations:
4s + 2a = 64
3s + 3a = 71
-3(4s + 2a = 64) ==> -12s - 6a = -192
2(3s + 3a = 71) ==> 6s + 6a = 142
-12s - 6a = -192
6s + 6a = 142
-6s = -50
/-6 /-6
s = $8.33 (the cost of each student ticket)
Now, let's find the cost of each adult ticket:
4s + 2a = 64
4(8.33) + 2a = 64
33.32 + 2a = 64
-33.32 -33.32
2a = 30.68
/2 /2
a = 15.34 (the cost of each adult ticket)
(x, y) ==> (8.33, 15.34)
Check your answer:
4s + 2a = 64
4(8.33) + 2(15.34) = 64
33.32 + 30.68 = 64
64 = 64
This statement is true
Hope this helps!
A+S=589
S=a-61
A+A-61=589
2a=589+61
2a=650
A=325
S=325-61
S=264
Hope this helps
Answer:
I do't know how to solve this.
Step-by-step explanation:
The answer is $57.60
(The original price) 45+ 12.60 (28% of 45) = 57.60
Answer:
2(x+4)
Step-by-step explanation:
Brainliest are appreciated :)