Answer:
<u><em>Total pressure of the flask is 2.8999 atm.</em></u>
Explanation:
Given data:
Volume of oxygen (O2) gas= 495 cm3
= 0.495 L (1 cm³ = 1 mL = 0.001 L)
Volume of nitrogen (N2) gas = 877 cm3
= 0.877 L (1 cm³ = 1 mL = 0.001 L)
volume of falsk = 536 cm3
= 0.536 L (1 cm³ = 1 mL = 0.001 L)
Temperature = 25 °C
T = (25°C + 273.15) K
= 298.15 K
Pressure = 114.7 kPa
= 114.700 Pa
Pressure (torr) = 114,700 / 101325
= 1.132 atm
Formula:
PV=nRT <em>(ideal gas equation)</em>
P = pressure
V = volume
R (gas constnt)= 0.0821 L.atm/K.mol
T = temperature
n = number of moles for both gases
Solution:
Firstly we will find the number of moles for oxygen and nitrogen gas.
<u>For Oxygen:</u>
n = PV / RT
n = 1.132 atm × 0.495 L / 0.0821 L.atm/K.mol × 298.15 K
= 0.560 / 24.47
= 0.0229 moles
<u>For Nitrogen:</u>
n = PV / RT
n = 1.132 atm × 0.877 / 0.0821 L.atm/K.mol × 298.15 K
n = 0.992 / 24.47
= 0.0406
Total moles = moles for oxygen gas + moles for nitrogen gas
= 0.0229 moles + 0.0406 moles
n = 0.0635 moles
Now put the values in formula
PV=nRT
P = nRT / V
P = 0.0635 × 0.0821 L.atm/K.mol × 298.15 K / 0.536 L
P = 1.554 / 0.536
<u><em>P = 2.8999 atm</em></u>
Total pressure in the flask is 2.8999 atm, while assuming the temperature constant.