Answer:
AAS
Step-by-step explanation:
HEHE
Answer:
b i think
Step-by-step explanation:
hope this helps
A) The probability the golfer got zero or one hole-in-one during a single game is between 10.01% and 11.38%.
B) The probability the golfer got exactly two holes-in-one during a single game is 8.57%.
C) The probability the golfer got six holes-in-one during a single game is close to 0%.
<h2 /><h2><u>How to determine probabilities</u></h2>
Since a miniature golf player sinks a hole-in-one about 12% of the time on any given hole and is going to play 8 games at 18 holes each, to determine A) what is the probability the golfer got zero or one hole -in-one during a single game, B) what is the probability the golfer got exactly two holes-in-one during a single game, and C) what is the probability the golfer got six holes-in-one during a single game , the following calculations must be performed:
- 1 - 0.12 = 0.88
- 0.88 ^ 17 = 0.1138
- 0.88 ^ 18 = 0.1001
Therefore, the probability the golfer got zero or one hole-in-one during a single game is between 10.01% and 11.38%.
- 0.88 ^ 18 - 0.12 ^ 2 = X
- 0.0857 = X
Therefore, the probability the golfer got exactly two holes-in-one during a single game is 8.57%.
- 0.12 ^ 6 x 0.88 ^ 12 = X
- 0.0000000001 = X
Therefore, the probability the golfer got six holes-in-one during a single game is close to 0%.
Learn more about probabilities in brainly.com/question/25273534
Answer:
10
Step-by-step explanation:
For the first one, you did good. I will just suggest a couple things.
Statement Reason
JK ≅ LM Given
<JKM ≅ < LMK Given (You did both of these steps so well done.)
MK ≅ MK Reflexive Property (Your angle pair is congruent but isn't one of the interior angle of the triangles you are trying to prove.)
ΔJMK ≅ ΔLKM SAS
Problem 2: (You also have a lot of great stuff here.)
Statement Reason
DE ║ FG Given
DE ≅ FG Given
<DEF≅<FGH Given
<EDF≅<GFH Corresponding Angles (You don't need to know that F is the midpoint but you got corresponding angle pair which is correct.)
ΔEDF≅ΔGFH ASA
<DFE≅<FHG CPCTC