The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
Carbonic acid
dissolves limestone and other rocks. This is an example of chemical erosion. An
example is in the caves. Caves are formed where rainwater as it falls
through the atmosphere absorbs carbon dioxide. The carbon dioxide makes the
rain acidic to react it with the limestone bedrock. The rainwater is absorbed
by the soil into the ground. Then as it enters through the soil, the rainwater
will absorb more carbon dioxide that is produced by the decomposers. The carbon
dioxide with water reacts to form carbonic acid. The carbonic acid will react
to limestone and dissolves it slowly. As the space become larger, water can
enter into it.
Answer:
yes
Explanation:
Revolution is the movement of an object around another object. So, Earth revolves around the Sun, and the Moon revolves around Earth. At the same time, Earth and the Moon are also rotating. Earth's rate of revolution is about 365 days (one year), and its rate of rotation is about 24 hours (one day).
The chief advantage of the metric system over other systems of measurement is that it B. is in multiples of 10.
This can be seen in the picture below that shows the prefixes of the metric system.