Step-by-step explanation:
Diameter is 6 ft
3 ft + 3ft
Answer:
C
Step-by-step explanation:
Step-by-step explanation:
The volume of a cylinder = πr²h
= 33 cubic inches
The volume of a cone = ¹/3 πr²h
If the cylinder and come share the same radius and height then ‘πr²h’ part of the formulas is the same for both;
It means the difference in proportionality is ¹/3 (because even π is the same across board). The volume of the cone is therefore;
¹/3 (33)
= 11
= 11 cubic inches
Hope this helps!
Both of these problems will be solved in a similar way, but with different numbers. First, we set up an equation with the values given. Then, we solve. Lastly, we plug into the original expressions to solve for the angles.
[23] ABD = 42°, DBC = 35°
(4x - 2) + (3x + 2) = 77°
4x+ 3x + 2 - 2 = 77°
4x+ 3x= 77°
7x= 77°
x= 11°
-
ABD = (4x - 2) = (4(11°) - 2) = 44° - 2 = 42°
DBC = (3x + 2) = (3(11°) + 2) = 33° + 2 = 35°
[24] ABD = 62°, DBC = 78°
(4x - 8) + (4x + 8) = 140°
4x + 4x + 8 - 8 = 140°
4x + 4x = 140°
8x = 140°
8x = 140°
x = 17.5°
-
ABD = (4x - 8) = (4(17.5°) - 8) = 70° - 8° = 62°
DBC =(4x + 8) = (4(17.5°) + 8) = 70° + 8° = 78°
Answer:
When you're talking factors, you're talking about some sort of integer; that's because “factors” depends on the concept of divisibility, which are virtually exclusive to integers. When you're talking “greater than”, you're excluding complex numbers (where the concept of ordering doesn't exist) and you're probably assuming positive integers. If you are, then no; no positive integer has factors that are larger than it.
If you go beyond positive numbers, that changes. 0 is an integer, and has every integer, except itself, as factors; since its positive factors are greater than zero, there are factors of zero that are greater than zero. If you extend to include negative numbers, you always have both positive and negative factors; and since all positive integers are greater than all negative integers, all negative integers have factors that are greater than them.
Beyond zero, though, no integer has factors whose magnitudes are greater than its own. And that's a principle that can be extended even to the complex integers
Step-by-step explanation: