Answer:
both
Explanation:
id say that it could occur but also not as much. the moon would be smaller and further from the earth to where we would barely be able to see it. if the full moon is barely visible then im sure the total solar eclipse wouldn't be as noticeable as it is now. but thats just my opinion
Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).
Answer:
C
Explanation:
Wind is geological therefore it is geological weathering
Answer: from the Zn anode to the Cu cathode
Justification:
1) The reaction given is: Zn(s) + Cu₂⁺ (aq) -> Zn²⁺ (aq) +Cu(s)
2) From that, you can see the Zn(s) is losing electrons, since it is being oxidized (from 0 to 2⁺), while Cu²⁺, is gaining electrons, since it is being reduced (from 2⁺ to 0).
3) Then, you can already tell that electrons go from Zn to Cu.
4) The plate where oxidation occurs is called anode, and the plate where reduction occus is called cathode.
So you get that the electrons flow from the anode (Zn) to the cathode (Cu).
Always oxidation occurs at the anode, and reduction occurs at the cathode.