Answer:
sweet
Step-by-step explanation:
This took 80 minutes
Y=mx+b m=-3/4 (1,3)
3=-3/4(1)+b
3=-3/4+b
b=3 3/4
y=-3/4+3 3 3/4
The missing values are (-6, -9) ( The last option)
Explanation:
x= - 6 has already produced the value of y as 5, the only pair in the given option the make the given ordered pairs NOT to be a function is (-6, -9) since it will give the value of y to be - 9.
<u><em>Answer:</em></u>
<u><em /></u>
<u><em>Explanation:</em></u>
<u>Before we begin, remember the following rules:</u>
<u>1- Distribution property:</u>
<u />
<u>2- Simplification of fractions:</u>
<u />
<u>3- Signs in multiplication:</u>
+ve * +ve = +ve
-ve * -ve = +ve
+ve * -ve = -ve
<u>Now, for the given problem, we have:</u>
<u></u>
<u>Starting with the distributive property:</u>
<u />
..................>This corresponds to option 1
<u>Now, we simplify the output from the above step:</u>
<u />
................> This corresponds to option 5
Hope this helps :)
<h3>Given</h3>
1) Trapezoid BEAR with bases 11.5 and 6.5 and height 8.5, all in cm.
2) Regular pentagon PENTA with side lengths 9 m
<h3>Find</h3>
The area of each figure, rounded to the nearest integer
<h3>Solution</h3>
1) The area of a trapezoid is given by
... A = (1/2)(b1 +b2)h
... A = (1/2)(11.5 +6.5)·(8.5) = 76.5 ≈ 77
The area of BEAR is about 77 cm².
2) The conventional formula for the area of a regular polygon makes use of its perimeter and the length of the apothem. For an n-sided polygon with side length s, the perimeter is p = n·s. The length of the apothem is found using trigonometry to be a = (s/2)/tan(180°/n). Then the area is ...
... A = (1/2)ap
... A = (1/2)(s/(2tan(180°/n)))(ns)
... A = (n/4)s²/tan(180°/n)
We have a polygon with s=9 and n=5, so its area is
... A = (5/4)·9²/tan(36°) ≈ 139.36
The area of PENTA is about 139 m².