Answer:the answer is hypothesis
Explanation: that’s the answer
Answer:
The ΔH of the reaction is + 12.45 KJ/mol
Explanation:
Mass of water= 100ml = 100g. (You should always assume 1cm3 of water as 1g)
heat capacity of water = 4.18 Jk-1 Mol-1
Change in temperature = (19.86 - 25.00) = -5.14 K (This is an endothermic reaction because of the fall in temperature)
Molar mass of NaHCO3 = 84 g/mol
Mole of NaHCO3 = 14.5 / 84 = 0.173 mol
Step 1 : Calculate the heat energy (Q) lost by the water.
Q = M x C x ΔT
Q = -100 x 4.18 x (-5.14)
Q = 2148.5 joules
Q = 2.1485 K J
Step 2: Calculating the ΔH of the reaction?
ΔH = Q / number of moles of NaHCO3
ΔH = 2.1485 / 0.173
ΔH = 12.42 KJ/mol
Answer:
A) H₂O at 120°C
Explanation:
It is possible to think the higher temperature, the greatest degree of disorder. That is because with a high temperature, vibrations of molecules increases.
In general, at low temperatures, the molecules are in solid state (The lowest degree of disorder), increasing its temperature, molecules becomes in liquids, and, with more temperature, are gases (The greatest degree of disorder).
Thus, the sample that has the greatest degree of disorder is:
<h3>A) H₂O at 120°C</h3>
Slow chemical change
It is a chemical change because the erosion is due to the chemical reaction between the acid and the in the rain and the calcium carbonate.
It is slow due to the concentration of acid is low.
Answer:
a) KOH
Explanation:
In the given balanced reaction
2K + 2H2O → 2KOH + H2
In the compound KOH,
The elements are K,O, and H and in the compound, there is one mole each of K , O ,and H.
So the element ratio here is 1 : 1 : 1.