<span>Yeast cells reproduce quickly by budding. This is a form of asexual reproduction so all the yeast cells are identical.
Hope this helps!</span>
Explanation:
Policy-makers have two broad types of instruments available for changing consumption and production habits in society. They can use traditional regulatory approaches (sometimes referred to as command-and-control approaches) that set specific standards across polluters, or they can use economic incentive or market-based policies that rely on market forces to correct for producer and consumer behavior. Incentives are extensively discussed in several EPA reports
Two basic types of traditional regulatory approaches exist. The first, a technology or design standard, mandates specific control technologies or production processes that polluters must use to meet an emissions standard. The second, a performance-based standard, also requires that polluters meet an emissions standard, but allows the polluters to choose any available method to meet that standard. Performance-based standards that are technology-based, for example, do not specify a particular technology, but rather consider what available and affordable technologies can achieve when establishing a limit on emissions. At times, EPA may completely ban or phase out the use or production of a particular product or pollutant, as it has done with chlorofluorocarbons (CFCs) and certain pesticides. Regulations can be uniform or can vary according to size of the polluting entity, production processes, or similar factors. Regulations are often tailored in this manner so that similar regulated entities are treated equally. MARK AS BRAINLIEST IF IT HELPS
Answer:
Explanation:
1.During glycolysis,four molecules of ATP are formed,and two are expended to cause the initial phosphorylation of glucose to get the process going.This gives a net gain of two molecules of ATP
For every glucose molecule that undergoes cellular respiration, the citric acid cycle is carried out twice; this is because glycolysis (the first stage of aerobic respiration) produces two pyruvate molecules per glucose molecule. During pyruvate oxidation (the second stage of aerobic respiration), each pyruvate molecule is converted into one molecule of acetyl-CoA—the input into the citric acid cycle. Therefore, for every glucose molecule, two acetyl-CoA molecules are produced. Each of the two acetyl-CoA molecules goes once through the citric acid cycle.
The citric acid cycle begins with the fusion of acetyl-CoA and oxaloacetate to form citric acid. For each acetyl-CoA molecule, the products of the citric acid cycle are two carbon dioxide molecules, three NADH molecules, one FADH2 molecule, and one GTP/ATP molecule. Therefore, for every glucose molecule (which generates two acetyl-CoA molecules), the citric acid cycle yields four carbon dioxide molecules, six NADH molecules, two FADH2 molecules, and two GTP/ATP molecules. The citric acid cycle also regenerates oxaloacetate, the molecule that starts the cycle.
While the ATP yield of the citric acid cycle is modest, the generation of coenzymes NADH and FADH2 is critical for ATP production in the final stage of cellular respiration, oxidative phosphorylation. These coenzymes act as electron carriers and donate their electrons to the electron transport chain, ultimately driving the production of most of the ATP produced by cellular respiration.
Circadian rhythms ....its just behavior that is repeated over 24 hours