Based on the calculation of the resultant of vector forces:
- the resultant force due to the quadriceps is 1795 N
- the resultant force due to the quadriceps is 1975 N. Training and strengthening the vastus medialis results in a greater force of muscle contraction.
<h3>What is the resultant force due to the quadriceps?</h3>
The resultant of more than two vector forces is given by:
where:
- Fₓ is the sum of the horizontal components of the forces
- Fₙ is the sum of the vertical components of the forces
- Fx = F₁cosθ + F₂cosθ + F₃cosθ + F₄cosθ
- Fₙ = F₁sinθ + F₂sinθ + F₃sinθ + F₄sinθ
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 480 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 480 * cos 55
Fx = -280.6 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 480 * sin 55
Fₙ = 1773.1 N
then:
F = √(-280.6)² + ( 1773.1)²
F = 1795.16 N
F ≈ 1795 N
Therefore, the resultant force due to the quadriceps is 1795 N
<h3>What would happen if the vastus medialis was trained and strengthened to contract with 720N of force?</h3>
From the new information provided:
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 720 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 720 * cos 55
Fx = -142.95 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 720 * sin 55
Fₙ = 1969.72 N
then:
F = √(-142.95)² + ( 1969.72)²
F = 1974.9 N
F ≈ 1975 N
Therefore, the resultant force due to the quadriceps is 1975 N.
Training and strengthening the vastus medialis results in a greater force of muscle contraction.
Learn more about resultant of forces at: brainly.com/question/25239010
Answer:
toward the center
Explanation:
Before answering, let's remind the first two Newton Laws:
1) An object at rest tends to stay at rest and an object moving at constant velocity tends to continue its motion at constant velocity, unless acted upon a net force
2) An object acted upon a net force F experiences an acceleration a according to the equation
where m is the mass of the object.
In this problem, we have an object travelling at constant speed in a circular path. The fact that the trajectory of the object is circular means that the direction of motion of the object is constantly changing: this means that its velocity is changing, so it has an acceleration. And therefore, a net force is acting on it. The force that keeps the object travelling in the circular path is called centripetal force, and it is directed towards the center of the circle (because it prevents the object from continuing its motion straight away).
So, the correct answer is
toward the center
By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
= + 2as
= + 2 x 0.3 x 61
= 36 + 36
= 72
V =
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617
Using Fleming’s left hand rule,
The magnetic force on the electron will be west. Example: If it is dropped above the equator in Africa, the electron will head towards North America.
Answer:
49.85 V
Explanation:
u = 0, s = 5.62 cm, t = 1.15 x 10^-6 s
Let the electric field is E and voltage is V.
Use second equation of motion
s = ut + 1/2 a t^2
5.62 x 10^-2 = 0 + 0.5 a x (1.15 x 10^-6)^2
a = 8.5 x 10^10 m/s^2
m x a = q x E
E = m x a / q
E = (1.67 x 10^-27 x 8.5 x 10^10) / (1.6 x 10^-19)
E = 887.19 V/m
V = E x s
V = 887.19 x 5.62 x 10^-2 = 49.85 V