Once again we have a skier on an inclined plane. The skier has mass M and starts from rest. Her speed at the bottom of the slope is 12.0 meters/second. The hill is inclined 30 degrees from the horizontal and the length of the slope is 100.0 meters.Use the law of conservation of energy to determine her final speed and write that number down here:
1 answer:
Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s
You might be interested in
A) the resistance is increasing Hope this helped!
Its the same thing. Is 250 grams more then 100 grams
Newton's 2nd law says: Force = (mass) x (acceleration) . I wrote Force and acceleration in bold letters because they're both vectors ... they have size and direction. The equation is saying that the Force and the acceleration are both in the same direction.
Answer:
3.75 kg
Explanation:
m=2xKE / v²