It depends on "Potential Energy", the amount energy it could have, the amount depending on certain circumstances, like height or force. This was how traditional and some modern rollercoasters work. As the "conveyer belt" pulls you up, the higher you go, the more potential energy you have. Once you are falling down the hill, you are experiencing "Kinetic Energy". Hope it makes sence.
The formula is:
v = v o + a t
6 = 10 + 3 * a
3 a = 10 - 6
a = 4 : 3
a = - 1.33 m/s² ( because the car slows down )
Answer: The average acceleration of the car is - 1.33 m/s²
Answer:
1.1397 Nm
Explanation:
When the palmaris longus muscle in the forearm is flexed, the wrist moves back and forth.
If the muscle generates a force
and , then the torque is equal to
we see that r = 2.65 cm = 0.0265 m
therefore
torque = 0.0265 x 49.5
= 1.1397 Nm
Answer:
- 0.6
Explanation:
Given that angle between normal y axis is 62° so angle between normal
and x axis will be 90- 62 = 28 °. Since incident ray is along x axis , 28 ° will be the angle between incident ray and normal ie it will be angle of incidence
Angle of incidence = 28 °
angle of reflection = 28°
Angle between incident ray and reflected ray = 28 + 28 = 56 °
Angle between x axis and reflected ray = 56 °
x component of reflected ray
= - cos 56 ( it will be towards - ve x axis. )
- 0.6
The answer is 21m because the motion is in one dimension with constant acceleration.
The initial velocity is 0, because it started from rest, the acceleration <span>ax</span> is <span>4.7<span>m<span>s2</span></span></span>, and the time t is <span>3.0s</span>
Plugging in our known values, we have
<span>Δx=<span>(0)</span><span>(3.0s)</span>+<span>12</span><span>(4.7<span>m<span>s2</span></span>)</span><span><span>(3.0s)</span>2</span>=<span>21<span>m</span></span></span>