Answer: The most likely partial pressures are 98.7MPa for NO₂ and 101.3MPa for N₂O₄
Explanation: To determine the partial pressures of each gas after the increase of pressure, it can be used the equilibrium constant Kp.
For the reaction 2NO₂ ⇄ N₂O₄, the equilibrium constant is:
Kp =
where:
P(N₂O₄) and P(NO₂) are the partial pressure of each gas.
Calculating constant:
Kp =
Kp = 0.0104
After the weights, the total pressure increase to 200 MPa. However, at equilibrium, the constant is the same.
P(N₂O₄) + P(NO₂) = 200
P(N₂O₄) = 200 - P(NO₂)
Kp =
0.0104 =
0.0104 + - 200 = 0
Resolving the second degree equation:
=
= 98.7
Find partial pressure of N₂O₄:
P(N₂O₄) = 200 - P(NO₂)
P(N₂O₄) = 200 - 98.7
P(N₂O₄) = 101.3
The partial pressures are = 98.7 MPa and P(N₂O₄) = 101.3 MPa
The processes for the 3 types of weathering are,
biological: rocks worn down by plants
physical: water freezing and thawing in cracks of rocks
chemical: Acid rain
Hope this helped!!
Answer:
Group 1 metals and transition metals are different from each other, mainly based on the colour of the chemical compounds that they form. The key difference between group 1 metals and transition metals is that the group 1 metals form colourless compounds, whereas the transition metals form colourful compounds.
Answer:
<h3>The answer is 32 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula
From the question
mass = 768 g
volume = 24 cm³
We have
We have the final answer as
<h3>32 g/cm³</h3>
Hope this helps you
Answer:
Expert Verified
Explanation:
For short duration: ... When excess of carbon dioxide gas is passed through lime water then the white precipitate calcium carbonate formed first dissolves due to the formation of a soluble salt calcium hydrogen carbonate (Ca(HCO3)2, and the Solution becomes clear again