Answer: about 1,100,000,000 to 1,500,000,000 Joules/second
Explanation:
1 MW (megawatt) = 1,000,000.00 J/s (joules per second)
1100(1,000,000) = 1,100,000,000
1500(1,000,000) = 1,500,000,000
Answer:
mesuring heigh and weight is important
Answer:
A. 456 seconds
Explanation:
We are given that two students walk in the same direction along a straight path at a constant speed.
One student walks with a speed=0.90 m/s
second student walks with speed=1.9 m/s
Total distance covered by each students=780 meter
We have to find who is faster and how much time extra taken by slower student than the faster student.
Time taken by one student who travel with speed 0.90 m/s=
Time=
Time taken by one student who travel with speed 0.90 m/s
=
Time taken by one student who travel with speed 0.90 m/s
=866.6 seconds
Time taken by second student who travel with speed 1.9 m/s=
=410.5 seconds
The second student who travels with speed 1.9 m/s is faster than the student travels with speed 0.90 m/s .
Extra time taken by the student travels with speed 0.90 m/s=866.6-410.5=456.1 seconds
Extra time taken by the student travels with speed 0.90 m/s=456 seconds
Hence, option A is true.
Answer:
Explanation:
ignoring air resistance, the kinetic energy at water impact will equal the potential energy converted
½mv² = mgh
v = √(2gh)
v = √(2(9.81)2.1) = 6.4188... m/s
after impact, an impulse will result in a change of momentum.
There is a downward impulse due to gravity equal to the weight of the stone and an upward average force due to water resistance and buoyancy force.
FΔt = mΔv
(F - mg)Δt = m(vf - vi)
(F - mg) = m(vf - vi)/Δt
F = m(vf - vi)/Δt + mg
F = m((vf - vi)/Δt + g)
F = 1.05(((½(-6.4188) - -6.4188)/ 1.83) + 9.81)
F = 12.14198...
F = 12.1 N
Position displacement velocity acceleration are vectors and the rest are scalars