Complete Question
The complete question is shown on the first uploaded image
Answer:
The value is
Explanation:
Generally for an n-type semiconductor the current density is mathematically represented as
Here is mathematically represented as
=>
=>
So
From the diagram
=>
So
So from
substitute
for q and
and from the diagram
So
Explanation & answer:
Given:
Fuel consumption, C = 22 L/h
Specific gravity = 0.8
output power, P = 55 kW
heating value, H = 44,000 kJ/kg
Solution:
Calculate energy intake
E = C*P*H
= (22 L/h) / (3600 s/h) * (1000 mL/L) * (0.8 g/mL) * (44000 kJ/kg)
= (22/3600)*1000*0.8*44000 j/s
= 215111.1 j/s
Calculate output power
P = 55 kW
= 55000 j/s
Efficiency
= output / input
= P/E
=55000 / 215111.1
= 0.2557
= 25.6% to 1 decimal place.
Answer:
(a) The absolute pressure at the bottom of the freshwater lake is 395.3 kPa
(b) The force exerted by the water on the window is 36101.5 N
Explanation:
(a)
The absolute pressure is given by the formula
Where is the absolute pressure
is the atmospheric pressure
is the density
is the acceleration due to gravity (Take )
h is the height
From the question
h = 30.0 m
= 1.00 × 10³ kg/m³ = 1000 kg/m³
= 101.3 kPa = 101300 Pa
Using the formula
P = 101300 + (1000×9.8×30.0)
P = 101300 + 294000
P =395300 Pa
P = 395.3 kPa
Hence, the absolute pressure at the bottom of the freshwater lake is 395.3 kPa
(b)
For the force exerted
From
P = F/A
Where P is the pressure
F is the force
and A is the area
Then, F = P × A
Here, The area will be area of the window of the underwater vehicle.
Diameter of the circular window = 34.1 cm = 0.341 m
From Area = πD²/4
Then, A = π×(0.341)²/4 = 0.0913269 m²
Now,
From F = P × A
F = 395300 × 0.0913269
F = 36101.5 N
Hence, the force exerted by the water on the window is 36101.5 N
Answer:
option D
Explanation:
this is because it occurs in many different dimensions, including biological, cognitive and socioemotional. this is also the answer on apex.
Hydraulic conductivity (K) is a property of soil<span> that describes the ease with which water can move through </span>pore<span> spaces. It depends on the permeability of the material (</span>pores, compaction) and on the degree of saturation. Saturated hydraulic conductivity, Ksat<span>, describes water movement through saturated media.</span><span />