<h3><u>Answer;</u></h3>
<em>All the above</em>
Workers at construction sites often reduce erosion by;
- <em>Moving excess sediment back to its original location
</em>
- <em>Planting trees
</em>
- <em>Spraying water on bare soil</em>
<h3><u>Explanation;</u></h3>
- Soil erosion is a naturally occurring process which involves the wearing away of the topsoil by natural forces such as wind, water or other forces associated with farming.
- <em><u>Construction of roads and buildings results to large amounts of soil erosion around the world. It is therefore important to put measures that would help reduce soil erosion at construction sites</u></em>. These measures uses principals of soil control such as implementing sediment control, limiting soil exposure, reducing the runoff velocity, and modifying topography among others.
Use the chart to help you look carefully at the numbers and the volumes to figure the questions out hope this helps
By 1.23 x 1024 you mean 10 to the power of 24 molecules? If so all you need to do is divide the number of molecules you have by Avagadros number, 6.022 x 10^23. This will give you the mols of water, or the mols of anything, since there is always 6.022 x 10^23 molecules in 1 mol of substance.
1.23x10^24 atoms/6.022x10^23 atom/mol = 2.04 mol H20
Answer:
3.052 × 10^24 particles
Explanation:
To get the number of particles (nA) in a substance, we multiply the number of moles of the substance by Avogadro's number (6.02 × 10^23)
The mass of Li2O given in this question is as follows: 151grams.
To convert this mass value to moles, we use;
moles = mass/molar mass
Molar mass of Li2O = 6.9(2) + 16
= 13.8 + 16
= 29.8g/mol
Mole = 151/29.8g
mole = 5.07moles
number of particles (nA) of Li2O = 5.07 × 6.02 × 10^23
= 30.52 × 10^23
= 3.052 × 10^24 particles.