+2 electron charges = 2x1.6x10^-19Coulombs
<span>An alpine glacier can change the topography of a mountainous area through Glacial Erosion and Glacial Deposition. Glaciers are agents of erosion, it can pick up and carry large rocks and sediments. In the process, a deep cavity or hole can form when the glacier plucks a big rock from where it passed. Glaciers have shaped many Mountain Ranges and have created distinct landforms by its erosion process. In Glacial Deposition, as glaciers melt, it deposits all that it carried and a landform is developed.</span>
E = mass x gravity x height
Answer:
How far will the electron travel beforehitting a plate is 248.125mm
Explanation:
Applying Gauss' law:
Electric Field E = Charge density/epsilon nought
Where charge density=1.0 x 10^-6C/m2 & epsilon nought= 8.85× 10^-12
Therefore E = 1.0 x 10^-6/8.85× 10^-12
E= 1.13×10^5N/C
Force on electron F=qE
Where q=charge of electron=1.6×10^-19C
Therefore F=1.6×10^-19×1.13×10^5
F=1.808×10^-14N
Acceleration on electron a = Force/Mass
Where Mass of electron = 9.10938356 × 10^-31
Therefore a= 1.808×10^-14 /9.11 × 10-31
a= 1.985×10^16m/s^2
Time spent between plate = Distance/Speed
From the question: Distance=1cm=0.01m and speed = 2×10^6m/s^2
Therefore Time = 0.01/2×10^6
Time =5×10^-9s
How far the electron would travel S =ut+ at^2/2 where u=0
S= 1.985×10^16×(5×10^-9)^2/2
S=24.8125×10^-2m
S=248.125mm
The part you talk into, that converts the sound of your voice
into an electrical signal, is a tiny microphone.
-- The sound waves from your voice are ripples in the air.
-- In most microphones, there's a tiny coil of wire hanging
between the ends of a tiny magnet.
-- When the ripples in the air hit the little coil of wire, they
make it vibrate (wiggle) slightly.
-- When a coil of wire wiggles in the field of a magnet,
a current flows in the wire.
There's your electrical signal !