Answer:
A) μ = A.m²
B) z = 0.46m
Explanation:
A) Magnetic dipole moment of a coil is given by; μ = NIA
Where;
N is number of turns of coil
I is current in wire
A is area
We are given
N = 300 turns; I = 4A ; d =5cm = 0.05m
Area = πd²/4 = π(0.05)²/4 = 0.001963
So,
μ = 300 x 4 x 0.001963 = 2.36 A.m².
B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;
B = (μ_o•μ)/(2π•z³)
Let's make z the subject ;
z = [(μ_o•μ)/(2π•B)] ^(⅓)
Where u_o is vacuum permiability with a value of 4π x 10^(-7) H
Also, B = 5 mT = 5 x 10^(-6) T
Thus,
z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)
Solving this gives; z = 0.46m =
Answer:
uniform acceleration
Explanation:
The definition for uniform acceleration is:
if an object travels in a straight line and its velocity increases or decreases by equal amounts in equal intervals of time, then the acceleration is said to be uniform.
Hope this helps.
Good Luck
Light travels in waves AND in bundles called "photons".
It's hard to imagine something that's a wave and also a bundle.
But it turns out that light behaves like both waves and bundles.
If you design an experiment to detect waves, then it responds to light.
And if you design an experiment to detect 'bundles' or particles, then
that one also responds to light.
Answer:
D
Explanation:
D) The overall work done by gravity is zero
This statement is correct .
If m be the mass of each of the children and h be the height of tower
work done by gravity on the boys in going up = - mgh
it is so because force applied by gravity = mg downwards and displacement
is upwards
work done will be negative = - mgh
Work done by gravity on boys when they come down = + mgh because both force and displacement are downwards .
Hence total work done = - mgh + mgh = 0.
The children will have same kinetic energy as the inclined surface is friction-less so no energy will be dissipated hence addition of energy to boys in both the cases will be same.