Answer:
93.5 kPa
Explanation:
Step 1: Given data
- Initial pressure (P₁): 81.0 kPa
- Initial temperature (T₁): 50 °C
- Final volume (T₂): 100 °C
Step 2: Convert the temperatures to the Kelvin scale
When working with gases, we need to consider the absolute temperature. We will convert from Celsius to Kelvin using the following expression.
K = °C + 273.15
T₁: K = 50°C + 273.15 = 323 K
T₂: K = 100°C + 275.15 = 373 K
Step 3: Calculate the final pressure of the gas
At a constant volume, we can calculate the final pressure of the gas using Gay-Lussac's law.
P₁/T₁ = P₂/T₂
P₂ = P₁ × T₂/T₁
P₂ = 81.0 kPa × 373 K/323 K
P₂ = 93.5 kPa
mass of carbonic acid = 300g
molar mass of H2CO3 = 2H + C + 3 O
= 2 x 1.008+ 12.01 + 3 x 16
= 62.03g/mol
moles of H2CO3 = mass/Molar mass
= 300/62.03
= 4.8364 moles
1 mole H2CO3 has 3 moles Oxygen
4.8364 moles H2CO3 contains
= 3 x 4.8364 moles Oxygen = 14.509 moles Oxygen
moles = mass/Molar mass
mass of oxygen = moles x Molar mass of Oxygen
= 14.509 x 16
= 232.15g Oxygen
mass of oxygen in 300g of carbonic acid(H2CO3) = 232.15g
Energy released from changing the phase of a substance from the liquid phase to solid phase can be calculated by using the specific latent heat of fusion. The heat of fusion of water at 0 degrees Celsius is 334 J/g. Calculation are as follows:
<span>
Energy = 5 grams x 334 J/g
</span><span>Energy = 1670 J</span>
Selfmade.ivyy hope this help