Answer:
B = - 0.0326 dm³/mol
Explanation:
virial eq until second term:
∴ P = 10 bar * (atm/ 1.01325 bar) = 9.869 atm
∴ T = 200°C = 473 K
∴ Vm = 3.90 dm³/mol
∴ R = 0.08206 dm³.atm/K.mol
⇒ PVm / RT = 1 + B/Vm
⇒ ((9.869 atm)*(3.90 dm³/mol)) / ((0.08206 dm³.atm/mol.K)*(473K)) = 1 + B/Vm
⇒ 0.99164 = 1 + B/Vm
⇒ B/Vm = - 8.357 E-3
⇒ B = (3.90 dm³/mol)*( - 8.357 E-3 )
⇒ B = - 0.0326 dm³/mol
Answer with Explanation:
"Mass" and "weight" should never be used interchangeably with each other. Mass refers to the <u>total amount of matter</u><u> that can be measured in an object, </u>while weight refers to the<u> measure of the</u><u> force of gravity</u><u> that is acting on the object's mass.</u>
The mass of an object is<u> constant</u> (meaning, it doesn't change even if the object will be placed on another location) while the weight of an object relies on the <em>force of gravity.</em> So, this means that your mass on Earth and on the moon are identical, however, your weight on Earth and on the Moon are different. You will weigh lesser on the Moon because it has a lesser surface gravity than that of Earth.
So, this explains the answer.
You must verify that the number of atoms of each type is equal on both sides of the chemical equation: same number of C, same number of H and same number of O on both sides.
<span>A. C4H6 + 5.5O2 ---> 4CO2 + 3H2O
element reactant side product side
C 4 4
H 6 3*2 = 6
O 5.5 * 2 = 11 4*2 + 3 = 11
Then, this equation is balanced.
</span>Do the same with the other equations if you want to verify that they are not balanced.
Answer: option A.