Answer:
beryllium iodide has a molar mass of 262.821 g mol−1 , which means that 1 mole of beryllium iodide has a mass of 262.821 g . To find the mass of 0.02 moles of beryllium iodide, simply multiply the number of moles by the molar mass in conversion factor form.
Explanation:
Answer:
34.7mL
Explanation:
First we have to convert our grams of Zinc to moles of zinc so we can relate that number to our chemical equation.
So: 6.25g Zn x (1 mol / 65.39 g) = 0.0956 mol Zn
All that was done above was multiplying the grams of zinc by the reciprocal of zincs molar mass so our units would cancel and leave us with moles of zinc.
So now we need to go to HCl!
To do that we multiply by the molar coefficients in the chemical equation:
This leaves us with 2(0.0956) = 0.1912 mol HCl
Now we use the relationship M= moles / volume , to calculate our volume
Rearranging we get that V = moles / M
Now we plug in: V = 0.1912 mol HCl / 5.50 M HCl
V= 0.0347 L
To change this to milliliters we multiply by 1000 so:
34.7 mL
Answer:
2,909 M
Explanation:
molair mass is of.ethylene is 26,04 g/mol
first you need to calculate how much mL 3 kg is. You can do this by using the density of ethylene: 1,1 g/mL.
3000 g x 1.1 = 3300 mL = 3,3 L
Next you need to calculate the amount of moles:
250 g / 26,04 g/mol = 9,60 mol
Now you can calculate the molarity:
9,6/3.3 = 2,909 M
I don't know the answer for the second question. I'm sorry.
Hey there:
Correct answer is :
(b) NaNH₂
Sodium azanide NaNH₂ is the conjugate base of ammonia NH₃
Correct answer is :
(b) NaNH₂
I hope this will help !
Answer:
0.825 M
Explanation:
The osmotic pressure is a colligative property, that can be calculated using the following expression.
π = M × R × T
where,
π is the osmotic pressure
M is the molarity
R is the ideal gas constant
T is the absolute temperature (24°C + 273 = 297 K)
M = π / R × T = 20.1 atm / (0.08206 atm.L/mol.K) × 297 K = 0.825 M