-2<em>x</em> + 6<em>y</em> = -38
3<em>x</em> - 4<em>y</em> = 32
To solve by elimination, multiply the top equation by 3 and the bottom equation by 2.
3(-2<em>x</em> + 6<em>y</em> = -38) --> -6<em>x</em> + 18<em>y</em> = -114
2(3<em>x</em> - 4<em>y</em> = 32) --> 6<em>x</em> - 8<em>y</em> = 64
Add the equations.
-6<em>x </em>+ 18<em>y</em> = -114
6<em>x</em> - 8<em>y</em> = 64
+_____________
0 + 10<em>y</em> = -50
10<em>y</em> = -50
<em>y</em> = -5
Substitute -5 for y into one of the original equations to find x.
3<em>x</em> - 4<em>y</em> = 32
3<em>x</em> - 4(-5) = 32
3<em>x</em> + 20 = 32
3<em>x</em> = 12
<em>x</em> = 4
Check work by plugging the <em>x</em>- and <em>y</em>-values into both of the original equations.
-2<em>x</em> + 6<em>y</em> = -38
-2(4) + 6(-5) = -38
-8 - 30 = 38
38 = 38
3<em>x</em> - 4<em>y</em> = 32
3(4) - 4(-5) = 32
12 + 20 = 32
32 = 32
Answer:
<em>x</em> = 4 and <em>y</em> = -5; (4, -5).