Jon has y stickers and uses 20
jon=y-20
the sisters share y-20 between 2 of them
therefore each sister receives
(y-20) divided by 2 -- (y-20)/2
The dimensions of the rectangular cross section will be<u> 10 centimeters by 18 centimeters</u>
<u></u>
Step-by-step explanation:
As ,we know
<u>The rectangular cross section is parallel to the front face</u>
Which clearly states that
The dimensions of the rectangular cross section is congruent with the dimensions of the front face
Lets assume that dimensions of the front face are 10 centimeters by 18 centimeters
<u>Then ,The dimensions of the cross section will also be 10 centimeters by 18 centimeters</u>
<u></u>
<u>Hence we can say that the</u> dimensions of the rectangular cross section will be<u> 10 centimeters by 18 centimeters</u>
Hello,
so all you have to do is match the abbreviations to the triangles. The abbreviations stand for what is the SAME in both triangles, denoted by similar markings on equal sides and angles.
Abbreviations:
SSS = Side-Side-Side
SAS = Side-Angle-Side
ASA = Angle-Side-Angle
AAS = Angle-Angle-Side
HL = Hypotenuse-Leg
* Note - the angle side angle must go around the triangle in that order. ASA has the side BETWEEN the congruent angles.. SSA does NOT work.
(9.) ASA
(10.) AAS
(11.) SSS
(12.) No way to tell if congruent. (only 3 angles no side)
(13.) ASA
(14.) SAS
(15.) HL
Answer:
x=-16
Step-by-step explanation:
from x=-3 to get to y=12 u need to multiply x=-3 by -4 to get to 12 so for y=64 u need to divide by -4 which equals x=-16
Answer:
Explanation:
To simplify a polynomial, we have to do two things: 1) combine like terms, and 2) rearrange the terms so that they're written in descending order of exponent.
First, we combine like terms, which requires us to identify the terms that can be added or subtracted from each other. Like terms always have the same variable (with the same exponent) attached to them. For example, you can add 1 "x-squared" to 2 "x-squareds" and get 3 "x-squareds", but 1 "x-squared" plus an "x" can't be combined because they're not like terms.
Let's identify some like terms below.
f(x)=−4x+3x2−7+9x−12x2−5x4
Here you can see that -4x and 9x are like terms. When we combine (add) -4x and 9x, we get 5x. So let's write 5x instead:
f(x)=5x+3x2−7−12x2−5x4
Let's do the same thing with the x-squared terms:
f(x)=5x+3x2−7−12x2−5x4
f(x)=5x−9x2−7−5x4
Now there are no like terms left. Our last step is to organize the terms so that x is written in descending power:
f(x)=−5x4−9x2+5x−7
Step-by-step explanation: