Explanation:
Let us calculate the work done in lifting an object of mass m through a height h, such as in Figure 1. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on the mass is then W = Fd = mgh. We define this to be the gravitational potential energy (PEg) put into (or gained by) the object-Earth system. This energy is associated with the state of separation between two objects that attract each other by the gravitational force
Potential energy is a property of a system rather than of a single object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position, we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a ladder will be the same for the first two rungs as for the last two rungs.
Cause he left out the noble gases out of the periodic table for one good reason, 1: He did not know them
The velocity of pin B after rod AB has rotated through 90* is vb = 3.2549 m/s.
<h3>What is Potential and Kinetic energy?</h3>
Potential energy is the energy that is stored in any item or system as a result of its location or component arrangement. The environment outside of the object or system, such as air or height, has no impact on it. In contrast, kinetic energy refers to the energy of moving particles inside a system or an item.
mass of rod, mab = 2.4kg
mass of rod, mbc = 4kg
conservation of energy
potential energy at position 1,
V1 = 2.5 * 9.81 * 0.18 + 4 * 9.81 * 0.18
V1 = 11.30112
kinetic energy T1 at position 1 is zero
potential energy at position 2 is zero
K.E at position 2,
= 1/3 *4 * (0.36)²
=0.10368kg m²
= 1/12 *4 * (0.6)²
=0.12kg m²
on putting the values in above equation we get,
T₂ = 1.0667vb²
0 + 11.30112 = 1.0667vb² + 0
vb = 3.2549 m/s
to learn more about Kinetic and potential energy go to - brainly.com/question/18963960
#SPJ4