At least, that's what Bohr<span> decided, and that's why he proposed the </span>existence<span> of the</span>atomic<span> energy level. </span>According<span> to </span>Bohr<span>, the electrons in an </span>atom<span> were only allowed to </span>exist<span> at certain energy levels</span>
Answer:
Neutral solution is formed.
Explanation:
When the hydrochloric acid and sodium hydroxide which is a strong base are combined together, it produces sodium chloride which is a salt and water. This solution is known as Neutral solution because the solution do not have the characteristics or properties of either an acid or a base. If the concentration of one of the reactant is higher as compared to another reactant so the product has the characteristics of that reactant.
When two atoms combine, the overlap of their atomic orbitals produces molecular orbitals.
<span>work = force x distances </span>
<span>A - moving 2 newton's up 0.6 meter = 1.2 joules
B - moving 4 newton's up 0.6 meter = 2.4 joules
C - moving 6 newton's up 0.3 meter = 1.8 joules
D - moving 9 newton's up 0.3 meter = 2.7 joules
The greatest amount of work is in example D.
</span>
<span>
D is your answer. </span>
Answer:
2.61 g of NO will be formed
The limiting reagent is the O₂
Explanation:
The reaction is:
4NH₃ + 5O₂ → 4NO + 6H₂O
We convert the mass of the reactants to moles:
3.25g / 17 g/mol = 0.191 moles of NH₃
3.50g / 32 g/mol =0.109 moles of O₂
Let's determine the limiting reactant by stoichiometry:
4 moles of ammonia react with 5 moles of oxygen
Then, 0.191 moles of ammonia will react with (0.191 . 5) / 4 = 0.238 moles of oxygen. We only have 0.109 moles of O₂ and we need 0.238, so as the oxygen is not enough, this is the limiting reagent
Ratio with NO is 5:4
5 moles of oxygen produce 4 moles of NO
0.109 moles will produce (0.109 . 4)/ 5 = 0.0872 moles of NO
We convert the moles to mass, to get the answer
0.0872 mol . 30g / 1 mol = 2.61 g