We know that
case 1) -10/-7-----> 10/7-------> is not <span>equivalent to -10/7
case 2) </span>-3 1/7----> (-3*7+1)/7----> -20/7 ------> is not equivalent to -10/7
case 3) 1 3/7-----> (1*7+3)/7----> 10/7 ------> is not equivalent to -10/7
case 4) - -10/-7---> +10/-7----> -10/7------> is equivalent to -10/7
case 5) -1 3/7----> (-1*7+3)/7----> -4/7 ------> is not equivalent to -10/7
the answer is
- -10/-7
There is nothing to help with...
Answer:
This equation is in standard form: ax 1+bx+c=0. Substitute 9 for a, 16 for b, and −112 for c in the quadratic formula 2a−b±b2−4ac.x= 2×9−16± 16^2−4×9(−112)Square 16.x=2×9−16±256−4×9(−112) Multiply −4 times 9.x=2×9−16± 256−36(−112) Multiply −36 times −112.x=2×9−16±256+4032 Add 256 to 4032.x=2×9−16±4288 Take the square root of 4288.x=2×9−16±8+67 Multiply 2 times 9x=18−16±8=67
Step-by-step explanation:
hope this help if not let me know
Answer:
csc²(x)
Step-by-step explanation:
csc(x) = 1/sin(x)
sin²(x) + cos²(x) = 1
=> cos²(x) = 1 - sin²(x)
cos(2x) = cos²(x) - sin²(x) = (1 - sin²(x)) - sin²(x) =
= 1 - 2×sin²(x)
=> 2×sin²(x) = 1 - cos(2x)
sin²(x) = 1/2×(1-cos(2x))
=> 1 - cos(2x) = 2×(1/2×(1-cos(2x)) = 2×sin²(x)
=> 2 / (1-cos(2x)) = 2 / (2×sin²(x)) = 1/sin²(x) =
= 1/sin(x) × 1/sin(x) = csc(x)×csc(x) = csc²(x)
This is true, because everyone has a fair chance