Answer:
d = <23, 33, 0> m
, F_W = <0, -9.8, 0>
, W = -323.4 J
Explanation:
We can solve this exercise using projectile launch ratios, for the x-axis the displacement is
x = vox t
Y Axis
y = t - ½ g t²
It's displacement is
d = x i ^ + y j ^ + z k ^
Substituting
d = (23 i ^ + 33 j ^ + 0) m
Using your notation
d = <23, 33, 0> m
The force of gravity is the weight of the body
W = m g
W = 1 9.8 = 9.8 N
In vector notation, in general the upward direction is positive
W = (0 i ^ - 9.8 j ^ + 0K ^) N
W = <0, -9.8, 0>
Work is defined
W = F. dy
W = F dy cos θ
In this case the force of gravity points downwards and the displacement points upwards, so the angle between the two is 180º
Cos 180 = -1
W = -F y
W = - 9.8 (33-0)
W = -323.4 J
Continuing in an existing state. Resistance to change.
Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15