Here we have to choose the correct statement on the effect of temperature on the motion of the molecules and atoms of a gas.
As the temperature increases the molecules and atoms move faster.
As per the kinetic theory of gas molecules and atoms the kinetic energy (K.E.) of the atom or molecules is related to temperature by the equation
K.E. = kT ( k = Boltzmann constant, T = temperature.
Thus as the temperature increases the K.E. increases thus the atom or molecules move faster.
With the decrease of temperature the movement of the atoms or molecules will be less and they will be near to each other.
The increment of temperature increase the K.E. thus the atoms or molecules move apart from each other.
With the decrease of temperature the movement of the atoms or molecules decreases.
Molarity of solution is defined as number of moles present in one liter solution. Mathematically, it is expressed as
Molarity =
Thus, if 1 mole of solute is present in 1 liter solution, molarity of solution is 1 M.
In present case, initial conc, of solution was 1.25 M.
∴ Number of moles of <span>co[h2o]6cl2 available initially = 1.25 mole, if the solution is 1 liter</span>
10 miles per hour because 500 divided by 50 is 10
<span>Answer: 56.6 moles
Explanation:
28.3 moles of Pb would produce twice as much moles as Ag.
28.3 X (2moles Ag/ 1 mol Pb) = 56.6 moles of Ag.</span>
Answer:
V₂ = 530.5 mL
Explanation:
Given data:
Initial temperature = 20.0°C
Final temperature = 40.0 °C
Final volume = 585 mL
Initial volume = ?
Solution:
Initial temperature = 20.0°C (20+273 = 293 K)
Final temperature = 40.0 °C (40+273 = 323 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 585 mL × 293 K / 323 K
V₂ = 171405 mL.K / 323 K
V₂ = 530.5 mL