Answer:
To prepare 1.00 L of 2.0 M urea solution, we need to dissolve 120 g of urea in enough water to produce a total of 1.00 L solution
Explanation:
Molarity of a solute in a solution denotes number of moles of solute dissolved in 1 L of solution.
So, moles of urea in 1.00 L of a 2.0 M urea solution = 2 moles
We know, number of moles of a compound is the ratio of mass to molar mass of that compound.
So, mass of 2 moles of urea =
Therefore to prepare 1.00 L of 2.0 M urea solution, we need to dissolve 120 g of urea in enough water to produce a total of 1.00 L solution
So, option (C) is correct.
Answer:
the answer of this question is true
It takes 33.4 s for the concentration of A to fall to one-fourth of its original value.
A <em>half-life</em> is the time it takes for the concentration to fall to half its original value.
Assume the initial concentration is 1.00 mol/L. Then,
The concentration drops to one-fourth of its initial value in two half-lives.
∴ Time = 2 × 16.7 s = 33.4 s
The angular momentum of an electron in the third Bohr orbit of a hydrogen atom is given by mvr=3h÷2π
<h3>What is momentum?</h3>
Momentum is defined as the amount of motion occurring in something that is moving, or the force that drives something forward to keep it moving.
Bohr never assumed stable electronic orbits with the electronic angular momentum quantized as
l=mvr =
Quantization of angular momentum means that the radius of the orbit and the energy will be quantized as well.
Bohr assumed that the discrete lines seen in the spectrum of the hydrogen atom were due to transitions of an electron from one allowed orbit/energy to another.
Learn more about momentum here:
https://brainly.in/question/38837394
#SPJ1
Answer:
Reflection involves a change in direction of waves when they bounce off a barrier; refraction of waves involves a change in the direction of waves as they pass from one medium to another; and diffraction involves a change in direction of waves as they pass through an opening or around a barrier in their path.
Explanation:
https://www.physicsclassroom.com/class/waves/Lesson-3/Reflection,-Refraction,-and-Diffraction#:~:text=Diffraction%20of%20Waves-,Reflection%20involves%20a%20change%20in%20direction%20of%20waves%20when%20they,a%20barrier%20in%20their%20path.