The fastest way is to just use a scientific calculator.
To do it without a calculator, use prime factorization.
I'll only do the second one which is the answer.
27 x 8
= 3^3 x 2^3 = 6^3
Which is a perfect cube.
Answer:
x = 3
x = (-1)/2
x = 13/4
Step-by-step explanation:
Solve for x:
(2 x)/3 + 15 = 17
Put each term in (2 x)/3 + 15 over the common denominator 3: (2 x)/3 + 15 = (2 x)/3 + 45/3:
(2 x)/3 + 45/3 = 17
(2 x)/3 + 45/3 = (2 x + 45)/3:
1/3 (2 x + 45) = 17
Multiply both sides of (2 x + 45)/3 = 17 by 3:
(3 (2 x + 45))/3 = 3×17
(3 (2 x + 45))/3 = 3/3×(2 x + 45) = 2 x + 45:
2 x + 45 = 3×17
3×17 = 51:
2 x + 45 = 51
Subtract 45 from both sides:
2 x + (45 - 45) = 51 - 45
45 - 45 = 0:
2 x = 51 - 45
51 - 45 = 6:
2 x = 6
Divide both sides of 2 x = 6 by 2:
(2 x)/2 = 6/2
2/2 = 1:
x = 6/2
The gcd of 6 and 2 is 2, so 6/2 = (2×3)/(2×1) = 2/2×3 = 3:
Answer: x = 3
______________________________________________________
Solve for x:
3 x - x + 8 = 7
Grouping like terms, 3 x - x + 8 = (3 x - x) + 8:
(3 x - x) + 8 = 7
3 x - x = 2 x:
2 x + 8 = 7
Subtract 8 from both sides:
2 x + (8 - 8) = 7 - 8
8 - 8 = 0:
2 x = 7 - 8
7 - 8 = -1:
2 x = -1
Divide both sides of 2 x = -1 by 2:
(2 x)/2 = (-1)/2
2/2 = 1:
Answer: x = (-1)/2
_______________________________________
Solve for x:
4 (2 x - 6) = 2
Divide both sides of 4 (2 x - 6) = 2 by 4:
(4 (2 x - 6))/4 = 2/4
4/4 = 1:
2 x - 6 = 2/4
The gcd of 2 and 4 is 2, so 2/4 = (2×1)/(2×2) = 2/2×1/2 = 1/2:
2 x - 6 = 1/2
Add 6 to both sides:
2 x + (6 - 6) = 1/2 + 6
6 - 6 = 0:
2 x = 1/2 + 6
Put 1/2 + 6 over the common denominator 2. 1/2 + 6 = 1/2 + (2×6)/2:
2 x = 1/2 + (2×6)/2
2×6 = 12:
2 x = 1/2 + 12/2
1/2 + 12/2 = (1 + 12)/2:
2 x = (1 + 12)/2
1 + 12 = 13:
2 x = 13/2
Divide both sides by 2:
x = (13/2)/2
2×2 = 4:
Answer: x = 13/4
Sin(63)=x/7
0.89100652418= x/7 > <span>0.89100652418 (7) = x/7(7)
</span><span>6.23704566932=x This is the height
</span>the area of a triangle is A=BH/2 or Base * Height /2
A= (<span>6.23704566932)(8)/2
</span>A=<span>24.9481826773 or 24.95 cm^2</span>
Assume the first even integer is x.
The next even integer will be 2 digits after this digit. So the next even integer will be x+2.
The reciprocals of these two even integers can be written as
and
respectively.
The sum of their reciprocals is 7/24. So we can set up the equation as:
Taking LCM on left hand side:
Cross Multiplying the denominators:
Using the quadratic formula to solve the above equation:
Since, the value of x can only be an integer, we discard the fractional value and keep x=6
So the first even integer is 6 and the next even integer is 8. The sum of reciprocals of 6 and 8 is 7/24