The acceleration of body is given 16.3m/s2 and the force is given 4.6 N then
We know,
Force=mass*acceleration
Then,
Mass=force/acceleration
Mass=4.6/16.3
Mass=0.28kg
M = mass of aluminium = 1.11 kg
= specific heat of aluminium = 900
= initial temperature of aluminium = 78.3 c
m = mass of water = 0.210 kg
= specific heat of water = 4186
= initial temperature of water = 15 c
T = final equilibrium temperature = ?
using conservation of heat
Heat lost by aluminium = heat gained by water
M ( - T) = m (T - )
(1.11) (900) (78.3 - T) = (0.210) (4186) (T - 15)
T = 48.7 c
<span>Most low-level radioactive waste (LLW) is typically sent to land-based disposal immediately following its packaging for long-term management. This means that for the majority (~90% by volume) of all of the waste types produced by nuclear technologies, a satisfactory disposal means has been developed and is being implemented around the world.
</span>
Radioactive wastes are stored so as to avoid any chance of radiation exposure to people, or any pollution.The radioactivity of the wastes decays with time, providing a strong incentive to store high-level waste for about 50 years before disposal.Disposal of low-level waste is straightforward and can be undertaken safely almost anywhere.Storage of used fuel is normally under water for at least five years and then often in dry storage.<span>Deep geological disposal is widely agreed to be the best solution for final disposal of the most radioactive waste produced.
</span>I suggest this site on this subject http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-wastes/storage-and-dispo...
1. The balls move to the opposite direction but the same speed. This represents Newton's third law of motion.
2. The total momentum before and after the collision stays constant or is conserved.
3. If the masses were the same, the velocities of both balls after the collision would exchange.
4 and 5. Use momentum balance to solve for the final velocities.
Answer:
7.04 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement on Earth = 1.2 m
a = Acceleration due to gravity on Moon = 1.67 m/s²
a = Acceleration due to gravity Earth= 9.81 m/s²
Accelration going up is considered as negetive
Initial Velocity of the ball
Assuming that the ball is thrown with the same velocity on the Moon, displacement of the ball is
The displacement of the ball on the moon is 7.04 m