B, d, e, f
they all equal 64
find the range of the function f(x) = 4x - 1 for the domain {-1, 0, 1, 2, 3}. {-5, -3, 0, 7, 11} {-5, -4, -3, -2, -1} {-11, -7,
Papessa [141]
Range = {4(-1) - 1, 4(0) - 1, 4(1) - 1, 4(2) - 1, 4(3) - 1} = {-4 - 1, 0 - 1, 4 - 1, 8 - 1, 12 - 1} = {-5, -1, 3, 7, 11}
Answer:
26 + y
----------
9y
Step-by-step explanation:
Your using parentheses here would remove a great deal of ambiguity. Looking at your 8-y/3y + y+2/9y - 2/6y, I have interpreted it to mean:
(8-y)/3y + (y+2)/9y - (2/6)y. For example, without parentheses, your 8-y/3y might be interpreted differently, as 8 - y/(3y), or 8 - 1/3.
Looking at (8-y)/3y + (y+2)/9y - (2/6)y again, we see three different denominators: 3y, 9y and 6 y. The LCD here is 9y. Multiplying all three terms of (8-y)/3y + (y+2)/9y - (2/6)y by the LCD, we get:
3(8-y) + (y+2) + 3y. We must now divide this by the LCD:
3(8-y) + (y+2) + 3y
--------------------------
9y
Next we need to perform the indicated multiplication:
24 - 3y + y + 2 + 3y
----------------------------
9y
and then to combine like terms:
24 + 2 - 3y + y + 3y, 26 + y
---------------------------- or -----------
9y 9y
Yes it is congruent to5x-1