Two vectors have magnitudes of 10 and 15. The angle between them when they are drawn with their tails at the same point is 65. The component of the longer vector along the line of the shorter is 6.33 .
A vector is a quantity or phenomenon that has two independent properties: magnitude and direction. The term also denotes the mathematical or geometrical representation of such a quantity. Examples of vectors in nature are velocity, momentum, force, electromagnetic fields, and weight.
The taller component will be 15 . There will be two components taller component , one in the direction of shorter component and other perpendicular to the shorter wavelength .
The component of longer wavelength in the direction of shorter will be
= 15 cos (theta ) = 15 cos (65) = 6.33
where theta is the angle between both the vectors
To learn more about vectors here
brainly.com/question/13322477
#SPJ4
Given:
length of the wire = 0.20 meters
magnetic field strength = 0.45 newtons/amperes meter
speed = 10.0 meters per second
emf = B * l * v
B = flux density ; l = length of the wire ; v = velocity of the conductor
emf = 0.45 newtons / ampere meter * 0.20 meters * 10.0 meters/seconds
emf = 0.90 volts
The emf produced is 0.90 volts.
First of all, the question is vague as you haven't mentioned the medium of propagation of the wave, which is extremely crucial.
For example light travels at <span>299,792</span> km/second in vacuum, but in certain semiconductors, it travels as slow as 9 km/second. Sound, ocean and seismic waves don't exist in vacuum at all.
If you mean the maximum possible speed any of these options can attain in any medium of choice for the different options, then the answer would be
b. radio waves, which travel exactly at the speed of light in vacuum (299,792 km/second) and with an almost similar(slightly less) speed in air. (Radio waves are nothing but electromagnetic waves with low frequency)
Answer:
W = 1.8 J
Explanation:
The amount of work required to move the given charges can be found by using the following formula:
where,
W = Work done = ?
k = Colomb's constant = 9 x 10⁹ Nm²/C²
q₁ = magnitude of first charge = 6 μC = 6 x 10⁻⁶ C
q₂ = magnitude of second charge = 4 μC = 4 x 10⁻⁶ C
Δr = change in distance = 18 cm - 6 cm = 12 cm = 0.12 m
Therefore,
<u>W = 1.8 J</u>
Answer: When a ray of light approaches a smooth polished surface and the light ray bounces back, it is called the reflection of light. The incident light ray which lands upon the surface is said to be reflected off the surface. The ray that bounces back is called the reflected ray.<u>
</u>
<u>
</u>
<u>
</u>Have a great day and stay safe !