Answer:
The answer to your question is Perimeter = [4x³ + 14x² + 50x - 150] / x(5 + x)
Step-by-step explanation:
Data
Width = (x² + 2x - 15)/x
Length = (3x² + 4x)/ (5 + x)
Process
1.- Write the formula for the perimeter of a rectangle
Perimeter = 2W + 2L
2.- Substitution
Perimeter = 2(x² + 2x - 15)/x + 2(3x² + 4x)/(5 + x)
3.- Simplification
Perimeter = (2x² + 4x - 30)/x + (6x² + 8x)/(5 + x)
4.- Sum the fractions
Least common factor = x(5 + x)
Perimeter = [(2x² + 4x - 30)(5 + x) + (x(6x² + 8x)] / x(5 + x)
-Simplification
Perimeter = [10x² + 20x - 150 - 2x³ - 4x² + 30x + 6x³ + 8x²] / x(5 + x)
Perimeter = [4x³ + 14x² + 50x - 150] / x(5 + x)