Since It's parallel to <span>y=5x-9 the slope of this new line is 5
so the equation looks like </span><span>y=5x+b
to find be we just replace x by 2 and y by 3
3=10-b so b = -7
the equation is </span><span>y=5x-7</span>
Base 10 has the ten digits: {0, 1, 2, 3, 4, 5, 6,7, 8, 9}
Base 11 has the digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A} where A is treated as a single digit number
Base 12 has the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B}
Base 13 has the digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C}
Base 14 has the digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D}
The digit D is the largest single digit of that last set. So the largest 3-digit base 14 integer is DDD which is the final answer
Note: It is similar to how 999 is the largest 3-digit base 10 integer
The measures of the angles don't change when you translate a figure, because the entire figure is moving as a whole. Imagine having a paper parallelogram, moving it around and flipping it over. Not even dilations would change these angles (for reasons that can be pretty easily visualed but not really proven until geometry)
Step-by-step explanation:
18h=252
9h=?(x)
9×252=18x
2268=18x
2268/18=x
x=126