Answer:
1.25 Moles
Explanation:
1.25 moles of solute
Explanation:
Molarity is defined as the number of moles of solute per liter of solution.
Molarity = moles of solute / liter of solution
We are given the molarity and volume, both of which have the correct units. All we have to do is rearrange the equation to find the number of moles. You can do this by multiplying both sides of the equation by the volume to cancel it out on the right hand side. Afterwards, you should end up having the volume multiplied by the molarity equaling the number of moles of solute like so:
Moles of solute = Molarity * Volume
2.5M HCl * 0.5 L = 1.25 moles of HCl
I hope this made sense.
B The collisions of the particles are elastic
Answer: A mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.
Explanation:
Given: Volume = 450 L
Temperature = 450 K
Pressure = 300 atm
Using ideal gas equation, moles of nitrogen are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = tempertaure
Substitute values into the above formula as follows.
According to the given equation, 1 mole of nitrogen forms 2 moles of ammonia. So, moles of ammonia formed by 3654.08 moles of nitrogen is as follows.
As moles is the mass of substance divided by its molar mass. So, mass of ammonia (molar mass = 17.03 g/mol) is as follows.
Thus, we can conclude that a mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.
If this is a single atom of Boron, there should be 5 electrons as well. Boron as an electron configuration of 2-3 or 1s2 2s2 2p