The mass of the large truck is determined as 5680 kg.
<h3>Mass of the truck</h3>
The mass of the truck is calculated as follows;
P = mv
where;
- P is momentum
- m is mass
- v is velocity
m = P/v
m = 125000/22
m = 5680 kg
Thus, the mass of the large truck is determined as 5680 kg.
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Answer:
Speed - scalar
Velocity - vector
Displacement - vector
Distance - scalar
Measurement - scalar
Measurement and direction - vector
60 m north - vector
100 m west - vector
200 m/s - scalar.
You may jump higher because the more the mass of the planet, the more gravitational force. There is less mass(and gravity) on Callisto so you wouldn’t be weighed down as much and can jump higher. Whereas on Jupiter there is more weight holding you down.