Answer:
The image distance is 20.0 cm.
Explanation:
Given that,
Power = 1.55 dp
Distance between book to eye = 26.0+3.00=29.0 cm
We need to calculate the focal length
Using formula of focal length
Put the value into the formula
We need to calculate the image distance
Using lens formula
Put the value into the formula
Hence, The image distance is 20.0 cm.
Answer:
Explanation:
In order to solve this problem we need to make a free body diagram of the book and the forces that interact on it. In the picture below you can see the free body diagram with these forces.
The person holding the book is compressing it with his hands, thus exerting a couple of forces of equal magnitude and opposite direction with value F.
Now the key to solving this problem is to analyze the equilibrium condition (Newton's third law) on the x & y axes.
To find the weight of the book we simply multiply the mass of the book by gravity.
W = m*g
W = 1.3[kg] * 9.81[m/s^2]
W = 12.75 [N]
Two equivalent hybridized orbitals will form from the mixing of one s-orbital and one p-orbital, that is (sp) orbital.
<h3>What are orbitals?</h3>
Orbital is the place around nucleus where mostly the electrons are present. There are four types of orbitals are present, s, p, d, and f.
The orbitals that are formed by the mixing of these orbitals are called hybrid orbitals.
Thus, two equivalent hybridized orbitals will form from the mixing of one s-orbital and one p-orbital, that is (sp) orbital.
Learn more about orbitals
brainly.com/question/18914648
#SPJ4
The formula for velocity is distance divided by time, or d/t. The distance is 500 km and the time is 1.2 hours. 500/1.2 is 416.6 km/hr.
Answer:
Featured snippet from the web
The atoms and molecules in it are in constant motion. The kinetic energy of such a body is the measure of its temperature. Potential energy is classified depending on the applicable restoring force. Gravitational potential energy – potential energy of an object which is associated with gravitational force