Answer:
the radius of sphere X is 2 times larger than the radius of sphere T
Step-by-step explanation:
Given
Surface area of sphere, T =452.16
Surface area of sphere, X= 1808.64
how many times larger is the radius of sphere X than the radius of sphere T?
Finding radius of both spheres:
Surface area of sphere is given as
A=4πr^2
Now putting value of Ta=452.16 in above formula
452.16=4πrt^2
rt^2=452.16/4π
rt^2=35.98
Taking square root on both sides
rt=5.99
Now putting value of Xa=1808.64 in above formula
1808.64=4πrx^2
rx^2=1808.64/4π
rx^2=143.92
Taking square root on both sides
rx=11.99
Comparing radius of sphere X and the radius of sphere T
rx/rt=11.99/5.99
= 2.00
rx=2(rt)
Hence the radius of sphere X is 2 times larger than the radius of sphere T!