Power is the amount of work done per unit of time. It will have units of Watts which is equal to Joules per second. We determine the energy of each system above by multiplying the power with time. We do as follows:
E(heater) =1000 W (1 hr) (3600s/hr) = 3,600,000 J
E(bulb) = 100 W (24 hr) (3600s/hr) = 8,640,000 J
Therefore, the answer would be false. It is the bulb that consumes more energy.
A. Increase is correct because the statement said the moons gravitational "PULL"
Answer:
10.52 m
Explanation:
The power radiated by a body is given by
P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴
P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ × 0.97 × 1.8 m² × (303)⁴ = 834.45 W
This is the power radiated by the human body.
The intensity I = P/A where A = 4πr² where r = distance from human body.
I = P/4πr²
r = (√P/πI)/2
If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus
r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m
So, the maximum distance at which a python could detect your presence is 10.52 m.
Answer:
0.853 m/s
Explanation:
Total energy stored in the spring = Total kinetic energy of the masses.
1/2ke² = 1/2m'v².................... Equation 1
Where k = spring constant of the spring, e = extension, m' = total mass, v = speed of the masses.
make v the subject of the equation,
v = e[√(k/m')].................... Equation 2
Given: e = 39 cm = 0.39 m, m' = 0.4+0.4 = 0.8 kg, k = 1.75 N/cm = 175 N/m.
Substitute into equation 2
v = 0.39[√(1.75/0.8)
v = 0.39[2.1875]
v = 0.853 m/s
Hence the speed of each mass = 0.853 m/s
Answer:
C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of Fr.
Explanation:
Yo want to prove the following equation:
That is, the net force exerted on an object is equal to the change in the kinetic energy of the object.
The previous equation is also equal to:
(1)
m: mass of the block
vf: final velocity
v_o: initial velocity
Ff: friction force
F(x): Force
x: distance
You know the values of vf, m and x.
In order to prove the equation (1) it is necessary that you have C The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F. Thus you can calculate experimentally both sides of the equation.