1.38 moles of oxygen
Explanation:
Thermal decomposition of Lead (II) nitrate is shown by the balanced equation below;
2Pb(NO₃)₂ → 2PbO + 4NO₂ + O₂
The mole ration of Lead (II) nitrate to oxygen is 2: 1
Therefore 2.76 moles of Lead (II) nitrate will lead to production of? moles of oxygen;
2: 1
2.76: x
Cross-multiply;
2x = 2.76 * 1
x = 2.76 / 2
x = 1.38
Answer:
See the answer and explanation below , please.
Explanation:
A conjugate base is defined as that formed after an acid donates its proton.
For each article, a continuation of the conjugate bases (highlighted in bold), for dissociation in water:
a) HF + H20 --> F- + H30+
b) H20+ H20 --> OH- + H30+
C)H2PO3- + H20--> HPO3 2- + H30+
d) HSO4- + H20 --> SO4 2- + H30+
E) HCL02 + H20 --> CLO02 - + H30+
Correct Question:
A chemist measures the enthalpy change ΔH during the following reaction: Fe(s) + 2HCl(g)-->FeCl2(s) + H2 ΔH=-157.0 kJ. Use this information to complete the table below. Round each of your answers to the nearest kJ/mol
Answer:
-314 kJ
+628 kJ
+157 kJ
Explanation:
The enthalpy change of a reaction measures the amount of heat that is lost or gained by it. If ΔH >0 the heat is gained, and the reaction is called endothermic, if ΔH<0, the heat is lost, and the reaction is called exothermic.
If the reaction is inverted, the value of ΔH is inverted too (the opposite endothermic reaction is exothermic), and if the reaction is multiplied by a constant, ΔH will be multiplied by it too.
1) 2Fe(s) + 4HCl --> 2FeCl2(s) + 2H2(g)
This reaction is the product of the given reaction by 2, so
ΔH = 2*(-157) = -314 kJ
2) 4FeCl2(s) + 4H2(g) --> 4Fe(s) + 8HCl(g)
This reaction is the inverted reaction given multiplied by 4, so
ΔH = 4*(157) = +628 kJ
3) FeCl2(s) + H2(g) --> Fe(s) + 2HCl
This reaction is the inverted reaction given, so
ΔH = +157 kJ
A bowling ball.
definition of dense-closely compacted in substance