The starting weight of the radioactive isotope = 96 grams
Weight after one hour is half of the starting weight. So the weight of the radioactive isotope after 1 hour = 48 grams
After 2 hours the weight is half as compared to the weight after previous hour. So weight after 2 hours = 24 grams.
This means, after every hour the weight is being halved. The half life of radioactive isotope is one hour.
Since after every hour, the weight is being halved, the weight of the isotope can be modeled by an exponential equation.
So,
Initial Weight = W₁ = 96
Change factor = 1/2 = 0.5
The general equation of the sequence will be:
Here t represents the number of hours. Using various values of t we can find the weight of the radioactive isotope at that time.
We can plot the sequence using the above equation. The graph is attached below.
Answer: 1
Step-by-step explanation:
Let the number of large bookcases be x and number of small bookcases be y, then
Maximise P = 80x + 50y;
subkect to:
6x + 2y ≤ 24
x, y ≥ 2
The corner points are (2, 2), (2, 6), (3.333, 2)
For (2, 2): P = 80(2) + 50(2) = 160 + 100 = 260
For (2, 6): P = 80(2) + 50(6) = 160 + 300 = 460
For (3.333, 2): P = 80(3.333) + 50(2) = 266.67 + 100 = 366.67
Therefore, for maximum profit, he should produce 2 large bookcases and 6 small bookcases.
Answer:
-decreases the chance of contracting any type of virus
-decreases the chance of other people contracting the virus
Step-by-step explanation:
That's an awfully broad question. Could you not be more specific?
A basic example: Suppose you are told that sin theta = 1/2. Solving this equation would require finding the measure of the angle theta. In this case the answer would be "30 degrees," or "pi/6 radians."