Answer:
Newtons first law states that:
<em>If</em><em> </em><em>a</em><em> </em><em>body</em><em> </em><em>i</em><em>s</em><em> </em><em>in</em><em> </em><em>rest</em><em> </em><em>or</em><em> </em><em>motion</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em>,</em><em> </em><em>it</em><em> </em><em>remains</em><em> </em><em>at</em><em> </em><em>rest</em><em> </em><em>or</em><em> </em><em>at</em><em> </em><em>motion</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em> </em><em>with</em><em> </em><em>constant</em><em> </em><em>speed</em><em> </em><em>until</em><em> </em><em>and</em><em> </em><em>unless</em><em> </em><em>and</em><em> </em><em>external</em><em> </em><em>unbalanced</em><em> </em><em>force</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>it</em><em>.</em>
<em>'</em><em>This</em><em> </em><em>law</em><em> </em><em>i</em><em>s</em><em> </em><em>also</em><em> </em><em>known</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>Inertia</em><em>.</em><em>'</em>
The added weight of the sand puts more downward pressure on the wheels contacting the rails, which would cause the trains speed to decrease.
For rotational equilibrium of the door we can say that torque due to weight of the door must be counter balanced by the torque of external force
here weight will act at mid point of door so its distance is half of the total distance where force is applied
here we know that
now we will have
so our applied force is 72.5 N
This equation is one of the most useful in classical physics. It is a concise statement of Isaac Newton's<span> Second Law of Motion, holding both the proportions and vectors of the Second Law. It translates as: The net force on an object is </span>equal<span> to the </span>mass<span>of the object multiplied by the </span>acceleration<span> of the object.</span>