<span>Electrons in a nitrogen-phosphorus covalent bond are not shared equally because nitrogen and phosphorus do not have the same electronegativity. The atoms spend more time around the most electronegative atom nitrogen.</span>
Answer:
The standard enthalpy of formation of this isomer of octane is -220.1 kJ/mol
Explanation:
Step 1: Data given
The combustion reaction of octane produces 5104.1 kJ per mol octane
Step 2: The balanced equation
C8H18(g) + 12.5 O2 ⟶ 8CO2 (g) + 9 H2O (g) ∆H°rxn = -5104.1 kJ/mol
Step 3:
∆H°rxn = ∆H°f of products minus the ∆H° of reactants
∆H°rxn = ∆H°f products - [∆H°f reactants]
-5104.1 kJ/mol = (8*∆H°fCO2 + 9*∆H°fH20) - (∆H°fC8H18 + 12.5∆H°fO2)
∆H°f C8H18 = ∆H°f 8CO2 + ∆H°f 9H2O+ 5104.1 kJ/mol
∆H°f C8H18 = 8 * (-393.5 kJ)/mol + 9 * (-241.8 kJ/mol)] + 5104.1 kJ
/mol
∆H°f C8H18 = -220.1 kJ/mol
The standard enthalpy of formation of this isomer of octane is -220.1 kJ/mol
Answer:
Oxygen is a simple molecular structure, where individual oxygen atoms are bonded to each other by strong covalent bonds. Hence, a low amount of energy is required to overcome these weak forces and oxygen has a low boiling point. Therefore, at room temperature, oxygen is a gas. Oxygen difluoride is a colorless gas, condensable to a pale yellow liquid, with a slightly irritating odor. It is the most stable of the compounds of fluorine and oxygen, which include O,F,, O,F, and 0,F2 but nevertheless it is a strong oxidizing and fluorinating agent. Oxygen Difluoride is a colorless gas or a yellowish-brown liquid with a foul odor. Just to finally link Joseph's answer to the question, oxygen difluoride will thus change from liquid to solid state when chilled from -220°c to -230°c. The boiling point of oxygen is -182.96 degrees Celsius (under 1 standard atmosphere). This means at temperatures below that point, oxygen is a solid or a liquid, and at temperatures above that point, oxygen is a gas. So at -183 degrees Celsius, oxygen is a liquid.
Explanation: