The mass percentage would be reduced but not as much as if it were a complete reaction ヽ༼ຈل͜ຈ༽ノ︵┻━┻ mark brainliest please
The grams of carbon dioxide that are in 35.6 liters of Co2 is calculates as below
calculate the number of moles of CO2
At STP 1 mole = 22.4 L
what about 35.6 liters
= 1mole x 35.6 liters/ 22.4 liters = 1.589 moles
mass of CO2 = moles x molar mass of CO2
= 1.589 mol x 44 g/mol = 69.92 grams
Answer:
Colourless
Explanation:
We know that Y^3+ has the electronic configuration of;
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 (the 5s and 4d levels are empty).
According to the crystal field theory, the colour of complexes result from transitions between incompletely filled d orbitals.
As a result of this, complexes with empty or completely filled d orbitals are colourless. Thus, [Y(H2O)6]3 is colourless according to the Crystal Field Theory.
Answer: 1090°C
Explanation: According to combined gas laws
(P1 × V1) ÷ T1 = (P2 × V2) ÷ T2
where P1 = initial pressure of gas = 80.0 kPa
V1 = initial volume of gas = 10.0 L
T1 = initial temperature of gas = 240 °C = (240 + 273) K = 513 K
P2 = final pressure of gas = 107 kPa
V2 = final volume of gas = 20.0 L
T2 = final temperature of gas
Substituting the values,
(80.0 kPa × 10.0 L) ÷ (513 K) = (107 kPa × 20.0 L) ÷ T2
T2 = 513 K × (107 kPa ÷80.0 kPa) × (20.0 L ÷ 10.0 L)
T2 = 513 K × (1.3375) × (2)
T2 = 1372.275 K
T2 = (1372.275 - 273) °C
T2 = 1099 °C
Answer:
A. Smaller, Larger
Explanation:
Every object that has mass obeys the Law of Universal Gravitation. Everything attracts everything else. The same gravity that keeps us down on the ground keeps planets in orbit. However, in space, the smaller object will feel the pull of the larger one much more strongly, which is why it will begin to orbit it